

National Education Society (R.) Jawaharlal Nehru New College of Engineering, Shivamogga (Approved by AICTE, New Delhi, Certified by UGC 2f & 12B, Accredited by NAAC - B', UG

(Approved by AICTE, New Delhi, Certified by UGC 2f & 12B, Accredited by NAAC –'B', UG programs:CE,ME,EEE,ECE,CSE,ISE, ETE PG Programs: MBA, acredited by NBA:1.7.2022 to 30.6.2025, Recognized by Govt. of Karnataka and Affiliated to VTU, Belagavi)

INTERNAL QUALITY ASSURANCE CELL (IQAC)

2018 Scheme

Sl.No	Branch	Sem	Subject	CO,S
1	TCE	3	Transform Calculus, Fourier Series and Numerical Techniques Mathematics (18MAT31)	 To remember the definition of Laplace transform, Fourier series, Fourier transform, Z-transform, formulae of numerical methods and calculus of variation. To understand the concept of Periodic function, Unit-Step function, Convolution theorem in Laplace transform, Fourier series of Period 2pi, arbitrary period 2l, half range series, Fourier series and Z-transform, numerical methods and calculus of variations. To apply the concept of Laplace transform in 2nd and higher order linear differential equations, Harmonic analysis in Fourier series, Z-transform in difference equation, numerical methods and Euler's equation, Geodesics in calculus of variation.
2		3	Network Theory (18EC32)	 Apply suitable techniques and theorems to compute currents and voltages in electrical networks Apply Laplace transform to compute network parameters

				3. Analyse electrical networks under transient conditions
				4. Design the resonant circuits and two port
				network parameters using related parameters
				1. CO1 • Understand the principles of
				semiconductor Physics •
				2. CO2. •Understand the principles and
				characteristics of different types of
2	3	2	Electronic Devices	semiconductor devices •
3		3	(18EC33)	3. CO3 •.Understand the fabrication process
				of semiconductor devices.
				4. CO4 • Utilize the mathematical models of
				semiconductor junctions and MOS
				transistors for circuits and system.
			Digital System Design (18EC34)	1. Use the basic logic gates and various
4		3		reduction techniques of digital logic circuits.
				2. Design the combinational logic systems
				viz: decoders, encoders, multiplexers.
	4	5		3. Design sequential circuits using SR, JK, D
				and T flip flops.
				4. Design applications of Combinational &
				Sequential Circuits.
				1. Describe the basic organization of a
			Computer Organization &	computer system.
				2. Describe the different ways of accessing
5		3		1/O devices.
			Architecture (18EC35)	3. Illustrate the organization of memory
				system.
				4. Analyse instruction execution in a
				1 Understand the principle of exerction and
				characteristics of SCP and UIT
6		3	Power Electronics &	2 Apply the basic principles of SCPs in
				2. Apply the basic principles of SCRS In designing converter/inverter circuits
				designing conventer/inventer circuits

				3. Apply the basic principles of measurement
				for various measuring instruments
				4. Apply the basic knowledge of
				instrumentation to understand transducers
				and PLCs
				1. Understand the characteristics of various
				electronic devices and measurement of
	7			parameters.
7		3	Electronic Devices & Instrumentation	2. Design and test simple electronic circuits.
			Laboratory (18ECL37)	3. Analyse the characteristics of electronic
				circuits and devices using Simulation
				Software.
				1. Demonstrate the TT of various expressions
			Digital System DesignLaboratory (18ECL38)	and combinational circuits using logic gates
		3		2. Design various combinational circuits
8				3. Design flip flops counters and shift
				registers
				4. simulate serial adder and binary multiplier
				1. CO 1. Remember the concept of
			Complex Analysis, Probability And Statistical Methods (18MAT41)	probability to solve the problems on
				probability distribution and joint probability
				distribution.
				2. CO 2. Understand the concept of
				correlation, regression and curve fitting.
9		4		3. CO3. Demonstrate testing of hypothesis
				of sampling distribution.
				4. CO4. Apply the knowledge of complex
				differentiation and complex integration in
				diverse fields related to field theory and
				signal processing.
				1. Solve rank of matrix by elementary row
10		4	Additional Mathematics -	operations - Echelon form. Consistency of
10		4	2 (18MATDIP41)	system of linear equations - Gauss
				elimination method

				2. Demonstrate various physical models
				through 2 nd and higher order linear
				differential equation and solve such
				equations.
				3. Construct a variety of Partial differential
				equation and solution by direct integration,
				method of separation of variables
				4. Apply the knowledge of numerical
				methods, infinite series and series solution of
				ordinary differential equation to explain
				various physical and engineering problems.
				1. Understand the biasing of BJTs, FETs and
				functioning of linear ICs
				2. Apply the basics of semiconductor devices
11			to obtain frequency response	
		4	Analog Circuits (18EC42)	3. Analyze the applications of semiconductor
				devices
				4. Design applications using semiconductor
				devices
				1. Develop the mathematical model of
				mechanical and electrical systems
				2. Develop transfer function for a given
				control system using block diagram reduction
				techniques and signal flow graph method.
		4		3. Determine the time domain specifications
12			Control Systems (18EC43)	for first and second order systems
				4. Determine the stability of a system in the
				time domain using Routh- Hurwitz criterion
				and Root-locus technique
				5. Determine the s stability of a system in the
				frequency domain using Nyquist and bode
				plots
				1. Apply the concept of Random Variables
13		4	Engineering Statistics &	and Random Processes in
1.5		Linear Algebra (18EC44)	Communication System	

				2. Model the Random events in typical
				communication events to extract quantitative
				statistical parameters.
				3. Analyze typical signal sets in terms of
				basis function of amplitude, phase and
				frequency.
				4. Demonstrate by way of simulation or
				emulation the ease of analysis employing
				basis functions, statistical representation and
				Eigen values.
		-		1. Apply mathematical descriptions to
				continuous and discrete time signals and
14		4	Signals & Systems (18EC45)	systems.
				2. Apply the properties of impulse response
				to determine output and characteristics of
				LTI systems.
				3. Analyse the spectral characteristics of
				signals using Fourier analysis.
				4. Analyze the signals in Z-domain and
				recover time domain signal using inverse
				transforms.
				1. Apply the basic knowledge of processor
				architecture in Embedded System design
				2. Design 8051 microcontroller based
				programs using assembly / high-level
15		4	Microcontroller (18EC46)	language
				3. Design programs based on timers and
				interrupts
				4. Design interfacing circuits to 8051
				Microcontroller
				1. Apply the fundamentals of assembly level
16		4	Microcontroller Laboratory (18FCI 47)	programming to demonstrate simple
				applications

18 4 Analog Circuits Laboratory (18ECL48) 3. Develop assembly level programs to simulate counters 17 4 Analog Circuits Laboratory (18ECL48) 1. Design analog circuits using BJT/FETs and evaluate their performance characteristics. 18 4 Maths for Communication Engineers (21MAT41) 1. Use the concept of Analytic function and complex potential to solve the problems in electro magnetic theory and complex integration in airfoil and image processing. 19 4 Digital Signal Processing (21EC42) 3. Fit an appropriate mathematical model for the statistical data by using correlation and regression analysis. 19 4 Digital Signal Processing (21EC42) 1. Understand the Discrete Fourier transform, digital filters and DSP architecture 19 4 Digital Signal Processing (21EC42) 1. Understand filtering of long data sequences.					2. Develop assembly level programs to
18 4 Analog Circuits Laboratory (18ECL48) Develop assembly level programs to simulate counters Interface 8051 microcontroller to peripheral devices. Design analog circuits using BJT/FETs and evaluate their performance characteristics. Design analog circuits using OPAMPs for different applications. Analyse and simulate analog circuits using transistors and OP-AMPs. 18 4 Maths for Communication Engineers (21MAT41) Use the concept of Analytic function and complex potential to solve the problems in electro magnetic theory and complex integration in airfoil and image processing. Obtain series solution ODEs Fit an appropriate mathematical model for the statistical data by using correlation and regression analysis. Apply discrete and continuous probability distribution and testing the hypothesis 19 4 Digital Signal Processing (21EC42) Understand the Discrete Fourier transform, digital filters and DSP architecture Apply Discrete Fourier Transform to determine the spectrum of real & complex signals and filtering of long data sequences. Apply divide & conquer approach to compute DFT. Unevelop FIR and IIR filters using different toebriow: 					simulate code conversions and sorting
19 4 Analog Circuits Laboratory (18ECL48) 3. Develop assembly level programs to simulate counters 17 4 Analog Circuits Laboratory (18ECL48) 1. Design analog circuits using BJT/FETs and evaluate their performance characteristics. 18 4 Analog Circuits Laboratory (18ECL48) 2. Design analog circuits using OPAMPs for different applications. 18 4 Maths for Communication Engineers (21MAT41) 1. Use the concept of Analytic function and complex potential to solve the problems in electro magnetic theory and complex integration in airfoil and image processing. 19 4 Maths for Communication Engineers (21MAT41) 3. Fit an appropriate mathematical model for the statistical data by using correlation and regression analysis. 19 4 Digital Signal Processing (21EC42) 1. Understand the Discrete Fourier transform, digital filters and DSP architecture 19 4 Digital Signal Processing (21EC42) 1. Understand the Discrete Fourier transform, digital filters and DSP architecture 19 4 Digital Signal Processing (21EC42) 1. Understand the Discrete Fourier transform, digital filters and DSP architecture					operations
17 4 Simulate counters 4. Interface 8051 microcontroller to peripheral devices. 17 4 Analog Circuits Laboratory (18ECL48) 1. Design analog circuits using BJT/FETs and evaluate their performance characteristics. 17 4 Analog Circuits Laboratory (18ECL48) 2. Design analog circuits using OPAMPs for different applications. 18 4 Maths for Communication Engineers (21MAT41) 1. Use the concept of Analytic function and complex potential to solve the problems in electro magnetic theory and complex integration in airfoil and image processing. 19 4 Maths for Communication Engineers (21MAT41) 3. Fit an appropriate mathematical model for the statistical data by using correlation and regression analysis. 19 4 Digital Signal Processing (21EC42) 1. Understand the Discrete Fourier transform, digital filters and DSP architecture 19 4 Digital Signal Processing (21EC42) 1. Understand the Discrete Fourier transform, digital filters and DSP architecture 19 4 Digital Signal Processing (21EC42) 1. Understand the Discrete Fourier transform to determine the spectrum of real & complex signals and filtering of long data sequences. 3 Apply divide & conquer approach to compute DFT. 4. Develop FIR and IIR filters using different to transform.					3. Develop assembly level programs to
17 4 Analog Circuits Laboratory (18ECL48) 1. Design analog circuits using BT/FETs and evaluate their performance characteristics. 17 4 Analog Circuits Laboratory (18ECL48) 2. Design analog circuits using OPAMPs for different applications. 18 4 Maths for Communication Engineers (21MAT41) 1. Use the concept of Analytic function and complex potential to solve the problems in electro magnetic theory and complex integration in airfoil and image processing. 18 4 Maths for Communication Engineers (21MAT41) 3. Fit an appropriate mathematical model for the statistical data by using correlation and regression analysis. 19 4 Digital Signal Processing (21EC42) 1. Understand the Discrete Fourier transform, digital filters and DSP architecture 19 4 Digital Signal Processing (21EC42) 1. Understand the Discrete Fourier transform, digital filters and DSP architecture					simulate counters
17 4 Analog Circuits Laboratory (18ECL48) 1. Design analog circuits using BJT/FETs and evaluate their performance characteristics. 17 4 Analog Circuits Laboratory (18ECL48) 2. Design analog circuits using OPAMPs for different applications. 18 4 Analog Circuits Laboratory (18ECL48) 1. Use the concept of Analytic function and complex potential to solve the problems in electro magnetic theory and complex integration in airfoil and image processing. 18 4 Maths for Communication Engineers (21MAT41) 3. Fit an appropriate mathematical model for the statistical data by using correlation and regression analysis. 19 4 Digital Signal Processing (21EC42) 1. Understand the Discrete Fourier transform, digital filters and DSP architecture 19 4 Digital Signal Processing (21EC42) 1. Understand the Discrete Fourier transform, digital filters and DSP architecture 19 4 Digital Signal Processing (21EC42) 1. Understand the Discrete Fourier transform, digital filters and DSP architecture					4. Interface 8051 microcontroller to
17 4 Analog Circuits Laboratory (IBECL48) 1. Design analog circuits using BJT/FETs and evaluate their performance characteristics. 17 4 Analog Circuits Laboratory (IBECL48) 2. Design analog circuits using OPAMPs for different applications. 18 4 Maths for Communication Engineers (21MAT41) 1. Use the concept of Analytic function and complex potential to solve the problems in electro magnetic theory and complex integration in airfoil and image processing. 18 4 Maths for Communication Engineers (21MAT41) 3. Fit an appropriate mathematical model for the statistical data by using correlation and regression analysis. 19 4 Digital Signal Processing (21EC42) 1. Understand the Discrete Fourier transform to determine the spectrum of real & complex signals and filtering of long data sequences. 19 4 Digital Signal Processing (21EC42) 1. Understand the Discrete Fourier transform to determine the spectrum of real & complex signals and filtering of long data sequences. 19 4 Digital Signal Processing (21EC42) 3. Apply divide & conquer approach to compute DFT.					peripheral devices.
17 4 Analog Circuits Laboratory (18ECL48) and evaluate their performance characteristics. 17 4 Analog Circuits Laboratory (18ECL48) 2. Design analog circuits using OPAMPs for different applications. 3. Analyse and simulate analog circuits using transistors and OP-AMPs. 3. Analyse and simulate analog circuits using transistors and OP-AMPs. 18 4 Maths for Communication Engineers (21MAT41) 1. Use the concept of Analytic function and complex potential to solve the problems in electro magnetic theory and complex integration in airfoil and image processing. 18 4 Maths for Communication Engineers (21MAT41) 3. Fit an appropriate mathematical model for the statistical data by using correlation and regression analysis. 19 4 Digital Signal Processing (21EC42) 1. Understand the Discrete Fourier transform, digital filters and DSP architecture 19 4 Digital Signal Processing (21EC42) 1. Understand the Discrete Fourier transform, to determine the spectrum of real & complex signals and filtering of long data sequences. 19 4 Digital Signal Processing (21EC42) 3. Apply divide & conquer approach to compute DFT.					1. Design analog circuits using BJT/FETs
17 4 Analog Circuits Laboratory (18ECL48) characteristics. 18 4 Analog Circuits Laboratory (18ECL48) 2. Design analog circuits using OPAMPs for different applications. 18 4 Maths for Communication Engineers (21MAT41) 1. Use the concept of Analytic function and complex potential to solve the problems in electro magnetic theory and complex integration in airfoil and image processing. 18 4 Maths for Communication Engineers (21MAT41) 3. Fit an appropriate mathematical model for the statistical data by using correlation and regression analysis. 19 4 Digital Signal Processing (21EC42) 1. Understand the Discrete Fourier transform, digital filters and DSP architecture 19 4 Digital Signal Processing (21EC42) 1. Understand the Discrete Fourier Transform to determine the spectrum of real & complex signals and filtering of long data sequences. 19 4 Digital Signal Processing (21EC42) 3. Apply divide & conquer approach to compute DFT.					and evaluate their performance
17 4 Analog Circuits Laboratory (18ECL48) 2. Design analog circuits using OPAMPs for different applications. 3. Analyse and simulate analog circuits using transistors and OP-AMPs. 3. Analyse and simulate analog circuits using transistors and OP-AMPs. 18 4 Maths for Communication Engineers (21MAT41) 1. Use the concept of Analytic function and complex potential to solve the problems in electro magnetic theory and complex integration in airfoil and image processing. 18 4 Maths for Communication Engineers (21MAT41) 3. Fit an appropriate mathematical model for the statistical data by using correlation and regression analysis. 19 4 Digital Signal Processing (21EC42) 1. Understand the Discrete Fourier transform, digital filters and DSP architecture 19 4 Digital Signal Processing (21EC42) 3. Apply divide & conquer approach to compute DFT.		17			characteristics.
18 4 Maths for Communication Engineers (21MAT41) 1. Use the concept of Analytic function and complex potential to solve the problems in electro magnetic theory and complex integration in airfoil and image processing. 18 4 Maths for Communication Engineers (21MAT41) 3. Fit an appropriate mathematical model for the statistical data by using correlation and regression analysis. 19 4 Digital Signal Processing (21EC42) 1. Understand the Discrete Fourier transform, digital filters and DSP architecture 19 4 Digital Signal Processing (21EC42) 3. Apply divide & conquer approach to compute DFT. 4 Digital Signal Processing (21EC42) 3. Apply divide & conquer approach to compute DFT.	17		4	Analog Circuits	2. Design analog circuits using OPAMPs for
18 4 Maths for Communication Engineers (21MAT41) 1. Use the concept of Analytic function and complex potential to solve the problems in electro magnetic theory and complex integration in airfoil and image processing. 18 4 Maths for Communication Engineers (21MAT41) 3. Fit an appropriate mathematical model for the statistical data by using correlation and regression analysis. 18 4 Digital Signal Processing (21EC42) 3. Fit an appropriate mathematical model for the statistical data by using correlation and regression analysis. 19 4 Digital Signal Processing (21EC42) 1. Understand the Discrete Fourier transform, digital filters and DSP architecture 19 4 Digital Signal Processing (21EC42) 1. Understand the Discrete Fourier transform, to determine the spectrum of real & complex signals and filtering of long data sequences. 3. Apply divide & conquer approach to compute DFT. 4. Develop FIR and IIR filters using different transform				Laboratory (18ECL48)	different applications.
18 4 Maths for Communication Engineers (21MAT41) 1. Use the concept of Analytic function and complex potential to solve the problems in electro magnetic theory and complex integration in airfoil and image processing. 18 4 Maths for Communication Engineers (21MAT41) 3. Fit an appropriate mathematical model for the statistical data by using correlation and regression analysis. 18 4 Digital Signal Processing (21EC42) 3. Fit an appropriate mathematical model for the statistical data by using correlation and regression analysis. 19 4 Digital Signal Processing (21EC42) 1. Understand the Discrete Fourier transform, digital filters and DSP architecture 19 4 Digital Signal Processing (21EC42) 1. Understand the Discrete Fourier transform, to determine the spectrum of real & complex signals and filtering of long data sequences. 19 4 Digital Signal Processing (21EC42) 3. Apply divide & conquer approach to compute DFT.					3. Analyse and simulate analog circuits using
19 4 Maths for Communication Engineers (21MAT41) 1. Use the concept of Analytic function and complex potential to solve the problems in electro magnetic theory and complex integration in airfoil and image processing. 18 4 Maths for Communication Engineers (21MAT41) 3. Fit an appropriate mathematical model for the statistical data by using correlation and regression analysis. 18 4 Digital Signal Processing (21EC42) 3. Fit an appropriate mathematical model for the statistical data by using correlation and regression analysis. 19 4 Digital Signal Processing (21EC42) 1. Understand the Discrete Fourier Transform to determine the spectrum of real & complex signals and filtering of long data sequences. 19 4 Digital Signal Processing (21EC42) 3. Apply divide & conquer approach to compute DFT. 4. Develop FIR and IIR filters using different techniques 4. Develop FIR and IIR filters using different techniques					transistors and OP-AMPs.
18 4 Maths for Communication Engineers (21MAT41) complex potential to solve the problems in electro magnetic theory and complex integration in airfoil and image processing. 18 4 Maths for Communication Engineers (21MAT41) 3. Fit an appropriate mathematical model for the statistical data by using correlation and regression analysis. 18 4 Maths for Communication Engineers (21MAT41) 3. Fit an appropriate mathematical model for the statistical data by using correlation and regression analysis. 18 4 Digital Signal Processing (21EC42) 4. Apply discrete and continuous probability distribution and testing the hypothesis 19 4 Digital Signal Processing (21EC42) 1. Understand the Discrete Fourier Transform to determine the spectrum of real & complex signals and filtering of long data sequences. 3. Apply divide & conquer approach to compute DFT. 4. Develop FIR and IIR filters using different to compute DFT.				Maths for Communication Engineers (21MAT41)	1. Use the concept of Analytic function and
18 4 Maths for Communication Engineers (21MAT41) electro magnetic theory and complex integration in airfoil and image processing. 18 4 Maths for Communication Engineers (21MAT41) 3. Fit an appropriate mathematical model for the statistical data by using correlation and regression analysis. 18 4 Maths for Communication Engineers (21MAT41) 3. Fit an appropriate mathematical model for the statistical data by using correlation and regression analysis. 18 4 Digital Signal Processing (21EC42) 1. Understand the Discrete Fourier transform, digital filters and DSP architecture 19 4 Digital Signal Processing (21EC42) 1. Understand the Discrete Fourier transform, to determine the spectrum of real & complex signals and filtering of long data sequences. 3. Apply divide & conquer approach to compute DFT. 19 4 Digital Signal Processing (21EC42) 3. Apply divide & conquer approach to compute DFT.					complex potential to solve the problems in
18 4 Maths for Communication Engineers (21MAT41) integration in airfoil and image processing. 18 4 Maths for Communication Engineers (21MAT41) 3. Fit an appropriate mathematical model for the statistical data by using correlation and regression analysis. 18 4 Apply discrete and continuous probability distribution in engg. field 19 4 Digital Signal Processing (21EC42) 1. Understand the Discrete Fourier Transform to determine the spectrum of real & complex signals and filtering of long data sequences. 19 4 Digital Signal Processing (21EC42) 3. Apply divide & conquer approach to compute DFT.					electro magnetic theory and complex
18 4 Maths for Communication Engineers (21MAT41) 2. Obtain series solution ODEs 3. Fit an appropriate mathematical model for the statistical data by using correlation and regression analysis. 4. Apply discrete and continuous probability distribution in engg. field 19 4 Digital Signal Processing (21EC42) 1. Understand the Discrete Fourier Transform to determine the spectrum of real & complex signals and filtering of long data sequences. 19 4 Digital Signal Processing (21EC42) 3. Apply divide & conquer approach to compute DFT.					integration in airfoil and image processing.
18 4 Maths for Communication Engineers (21MAT41) 3. Fit an appropriate mathematical model for the statistical data by using correlation and regression analysis. 18 4 Apply discrete and continuous probability distribution in engg. field 19 4 Digital Signal Processing (21EC42) 1. Understand the Discrete Fourier Transform to determine the spectrum of real & complex signals and filtering of long data sequences. 19 4 Digital Signal Processing (21EC42) 3. Apply divide & conquer approach to compute DFT.					2. Obtain series solution ODEs
18 4 Engineers (21MAT41) the statistical data by using correlation and regression analysis. 4 Apply discrete and continuous probability distribution in engg. field 5. Construct joint probability distribution and testing the hypothesis 19 4 Digital Signal Processing (21EC42) 1. Understand the Discrete Fourier Transform to determine the spectrum of real & complex signals and filtering of long data sequences. 3. Apply divide & conquer approach to compute DFT. 4. Develop FIR and IIR filters using different techniques	10				3. Fit an appropriate mathematical model for
19 4 Digital Signal Processing (21EC42) Apply discrete Fourier Transform to determine the spectrum of real & complex signals and filtering of long data sequences. 3. Apply divide & conquer approach to compute DFT. 4. Develop FIR and IIR filters using different transform. 	18	18	4		the statistical data by using correlation and
194Digital Signal Processing (21EC42)4. Apply discrete and continuous probability distribution in engg. field 5. Construct joint probability distribution and testing the hypothesis 1. Understand the Discrete Fourier transform, digital filters and DSP architecture 2. Apply Discrete Fourier Transform to determine the spectrum of real & complex signals and filtering of long data sequences. 3. Apply divide & conquer approach to compute DFT. 4. Develop FIR and IIR filters using different techniques					regression analysis.
19 4 Digital Signal Processing (21EC42) A Digital Signal Processing (21EC42) A Digital Signal Processing (21EC42) A Digital Signal Processing (21EC42) A Apply divide & conquer approach to compute DFT. 					4. Apply discrete and continuous probability
194Digital Signal Processing (21EC42)5. Construct joint probability distribution and testing the hypothesis194Digital Signal Processing (21EC42)1. Understand the Discrete Fourier Transform to determine the spectrum of real & complex signals and filtering of long data sequences. 3. Apply divide & conquer approach to compute DFT.4. Develop FIR and IIR filters using different tachniques					distribution in engg. field
194Digital Signal Processing (21EC42)1. Understand the Discrete Fourier transform, digital filters and DSP architecture194Digital Signal Processing (21EC42)2. Apply Discrete Fourier Transform to determine the spectrum of real & complex signals and filtering of long data sequences. 3. Apply divide & conquer approach to compute DFT.4. Develop FIR and IIR filters using different tachniques					5. Construct joint probability distribution
194Digital Signal Processing (21EC42)1. Understand the Discrete Fourier transform, digital filters and DSP architecture194Digital Signal Processing (21EC42)2. Apply Discrete Fourier Transform to determine the spectrum of real & complex signals and filtering of long data sequences. 3. Apply divide & conquer approach to compute DFT.4. Develop FIR and IIR filters using different tachniques					and testing the hypothesis
194Digital Signal Processing (21EC42)digital filters and DSP architecture2. Apply Discrete Fourier Transform to determine the spectrum of real & complex signals and filtering of long data sequences.3. Apply divide & conquer approach to compute DFT.4. Develop FIR and IIR filters using different tachniques					1. Understand the Discrete Fourier transform,
194Digital Signal Processing (21EC42)2. Apply Discrete Fourier Transform to determine the spectrum of real & complex signals and filtering of long data sequences.194Digital Signal Processing (21EC42)3. Apply divide & conquer approach to compute DFT.4Develop FIR and IIR filters using different tachniques					digital filters and DSP architecture
194Digital Signal Processing (21EC42)determine the spectrum of real & complex signals and filtering of long data sequences.194Digital Signal Processing (21EC42)determine the spectrum of real & complex signals and filtering of long data sequences.3. Apply divide & conquer approach to compute DFT.3. Apply divide & conquer approach to compute DFT.4. Develop FIR and IIR filters using different tachniques					2. Apply Discrete Fourier Transform to
194Digital Signal Processing (21EC42)signals and filtering of long data sequences.3. Apply divide & conquer approach to compute DFT.3. Apply divide & conquer approach to compute DFT.4. Develop FIR and IIR filters using different tachniques					determine the spectrum of real & complex
 (21EC42) 3. Apply divide & conquer approach to compute DFT. 4. Develop FIR and IIR filters using different techniques 	19		4	Digital Signal Processing	signals and filtering of long data sequences.
 compute DFT. 4. Develop FIR and IIR filters using different 				(21EC42)	3. Apply divide & conquer approach to
4. Develop FIR and IIR filters using different					compute DFT.
tachniques					4. Develop FIR and IIR filters using different
techniques					techniques

				1. Analyse and solve Electric circuit by
				applying, loop analysis, Nodal analysis and
20				by applying network theorems
				2. Evaluate two port parameters of s network
				and Apply Laplace transform to solve
				electric network.
			Circuits & Controls	3. Interpret different physical and mechanical
		4	(21EC43)	systems in terms of electrical system to
				construct equivalent electrical models for
				analysis.
				4. Apply various control system concepts to
				analyze and find the stability of the system.
				5. Represent state model of the system and
				find the time response of the system.
		4	Communication Theory (21EC44)	1. Compare the performance of different
				types of amplitude modulation schemes.
				2. Analyse angle modulation schemes and its
				effects in time and frequency domain.
21				3. Analyse the effect of noise in analog
				modulation systems
				4. Apply the concepts of sampling process
				and waveform coding techniques on different
				types of signals
				1. Understand and analyse the essentials of
				human values and skills, self-exploration,
				happiness and prosperity.
				2. Evaluate coexistence of the "I" with the
22		4	Universal Human Values	body.
		4	(21UH49)	3. Identify and evaluate the role of harmony
				in family, society and universal order.
				4. Understand and associate the holistic
				perception of harmony at all levels of
				existence.

				5. Develop appropriate technologies and
				management patterns to create harmony in
				professional and personal lives.
				1. Demonstrate the signal generation and
				sampling.
			2. Develop a Scilab program to simulate	
23	23	4	Octave / Scilab for signals	signal processing operations.
			(212C465)	3. Design IIR and FIR filters.
				4. Design, demonstrate and visualize
				different real world signals
				1. Demonstrate the AM and FM modulation
				and demodulation by representing the signals
24			in time and frequency domain	
			Communication Laboratory I (21ECL46)	2. Design and test the sampling, Multiplexing
		4		and PAM with relevant circuits
				3. Demonstrate the basic circuitry and
				operations used in AM and FM receivers.
				4. Illustrate the operation of PCM and delta
				modulations for different input conditions.
				1. Understand the fundamental concepts of
				Management and Entrepreneurship and
				opportunities in order to setup a business.
				2. Describe the functions of Managers,
			Technological Innovation Management And	Entrepreneurs and their social
25		5		responsibilities.
			(18ES51)	3. Understand the components in developing
				a business plan.
				4. Awareness about various sources of
				funding and institutions supporting
				entrepreneurs.
		ļ		1. Understand the Discrete Fourier transform,
				digital filters and DSP architecture
26		5	Digital Signal Processing	2. Apply Discrete Fourier Transform to
			(10EC32)	determine the spectrum of real & complex
				signals and filtering of long data sequences.

				3. Apply divide & conquer approach to
				compute DFT.
				4. Develop FIR and IIR filters using different
				techniques.
				1. Compare the performance of different
				types of amplitude modulation schemes.
				2. Analyze angle modulation schemes and its
		Principles of	effects in time and frequency domain.	
27		5	Communication Systems	3. Analyze the effect of noise in analog
			(18EC53)	modulation systems.
				4. Apply the concepts of sampling process
				and waveform coding techniques on different
				types of signals.
				1. Apply the basic concept of information
			Information Theory &	theory to characterize Dependent &
		5		IndependentSources
				2. Apply Source Encoding Algorithms to
				encode the data
				3. Model the continuous and discrete
28				communication channels using input, output,
		Couing (18EC34)	and jointprobabilities	
				4. Determine a codeword comprising of the
				check bits computed using error control
				codingtechniques
				5. Design the encoding and decoding circuits
				in channel coding
	-			1. Understand the basic concepts of electric
				field and magnetic field
				2. Apply the concepts of electric field in
				solving numerical problems
29		5	Electromagnetic Waves	3. Apply the concepts of Magnetic field in
			(18EC55)	solving numerical problems
				4. Apply Maxwell 's equation for time
				varying fields for EM waves in free space and
				conductors

				1. Identify the suitable Abstraction level for a
				particular digital design.
				2. Interpret the various constructs in logic
				synthesis.
30	30	5	Verilog HDL (18EC56)	3. Design and verify the functionality of
				digital circuits/systems in different
				abstractionlevels using test benches.
				4. Design digital circuits effectively using
				Verilog tasks, functions and directives.
				1. Handle discrete/digital signals using
				MATLAB.
				2. Design the signal processing algorithm
				using MATLAB.
31	5	Digital Signal Processing	3. Design IIR, and FIR filters for band pass,	
			Laboratory (18ECL57)	band stop, low pass and high pass filters.
				4. Implement DSP algorithms on DSP
				processor TMS320C6713 floating point
				Processor using C language
			HDL Laboratory (18ECL58)	1. Write the Verilog/VHDL Programs to
				simulate Combinational circuits in Dataflow,
				Bihavioral and Gate level Abstractions.
				2. Describe Sequential circuits like flip flops
				and counters in Bihavioral Description and
		_		obtain simulation waveforms.
32		5		3. Synthesize Combinational and Sequential
				circuits on programmable ICs and test the
				hardware.
				4. Interface the hardware to the
				programmable chips and obtain the required
				output.
				1. Explain the basic concepts of digital
				communication system.
33		6	Digital Communication	2. Apply the knowledge of signal
			(18EC01)	representation and transmission over AWGN
				channels.

				3. Analyze the performance of a digital communication system in light of transmission over AWGN channels and
				band-limited channels.
				4. Design the transmitter and receiver for
				signaling over AWGN channels and band-
				limited channels.
				5. Design communication and signaling
				subsystem using open source tools.
				1. Know the Principle Of Operation Of
	34			Microwavetubes
				2. Understand the concepts of S- Parameters
34		6	Microwave Theory &	and various Microwave passive components
			Antennas (181E02)	3. Understand the basic basic parameters as
				applied to Antennas.
				4. Analyse Antennas and Array of Antennas.
			Computer Communication Networks (18TE63)	1. Explain the basic concepts of data
				communications, networking and topology of
				wired / wireless networks.
				2. Apply the knowledge of data link and
	35			network layers in communication protocol
25		6		design
35		0		3. Apply the knowledge of transport layer
				and application layers in communication
				protocol design
				4. Simulate networking concepts and routing
				protocols using programming and open
				source tool
				1. Understand the basic terminologies and
		6		compare different classes of Operating
36			Operating System	Systems
50			(18EC641)	2. Apply the concepts of Processes,
				Threads and Memory Management in Real
				Time Scenarios

	50111111111111
a given set of processes	
4. Apply the concept o	f Process
communication in Message pa	ssing, File
systems and Input Output Contro	l System
1. Understand the services	offered by
different layers of layered	network
architecture.	
2. Model and Analyze pa	acket /file
transmission between no	des for
CCN Laboratory wired/wireless local area netw	ork (LAN)
376CCIV Laboratory (18TEL66)(TCP/UDP) using NCTUNs.	
3. Simulate the networking co	ncepts and
protocols using C/C++ programm	ing.
4. Analyze the performance	of various
protocols and routing algorithms	of layered
network architecture.	
1. Demonstrate Time Division M	ultiplexing
2. Design and test Analog a	nd Digital
Modulation and demodulation cir	cuits.
3. Design and Generate Line code	s for Signal
Analog And Digital Transmission.	
38 6 Communication Laboratory (18TEL67) 4. Analyse the characteristics of	an optical
communication system.	
5. Simulate the Digital Com	munication
concepts, Compute and Displ	ay various
parameters along with Plots/Fi	
1. Apply the knowledge of	engineering
fundamentals, Consolidate the	literature
survey to formulate the engineering	ng problem.
39 6 Mini-project (18TEMP68) 2. Identify the community that s	hall benefit
through the solution to the	identified
engineering problem and also o	lemonstrate
concern for the environment and	society.

				3. Implement the design solution(s) using
				identified tools.
				4. Analyze and interpret the results of
				experiments conducted on the designed
				solution(s) to arrive at a valid conclusion.
				5. Engage in effective oral and written
				communication through the presentation of
				the project work.
				6. Perform in the team, contribute to the team
				and mentor/lead the team and follow
				professional ethics.
				1. Classification and working of optical fiber
			Optical Communication (18TE71)	with different modes of signal propagation
		7		2. Describe the transmission characteristics
				and losses in optical fiber communication
				3. Describe the construction and working
				principle of optical connectors, multiplexers
40				and amplifiers
				4. Describe the constructional features and
				the characteristics of optical sources and
				detectors
				5. Illustrate the networking aspects of optical
				fiber and describe various standards
				associated with it
				1. Understand the concepts of propagation
				mechanisms in wireless channels from a
				physics standpoint.
41				2. Analyse propagation model for simple
		7	Wireless Communication (18TE72)	channels involving two paths only using
				concepts studied from physics.
				3. Develop a statistical model for practical
				channels involving multiplicity of
				propagation paths and its application in a
				cellular scenario.

				4. Application of Communication theory
				both Physical and networking to understand
				GSM and CDMA systems that handle mobile
				telephony
				1. Understand the fundamentals of real Time
				systems and its classifications
				2. Understand the concepts of computer
				control and operating systems
				3. Understand the concepts of computer
42		7	Real Time System	hardware requirements for real time
			(18EC731)	applications
				4. Develop the software languages to meet
				real time application
				5. Apply suitable methodologies to design
				and develop real Time systems
		7	Cryptography (18EC744)	1. Understand the basics of symmetric key
				and public key cryptography
				2. Explain classical cryptographic algorithms
				3. Acquire knowledge of mathematical
43				concepts required for cryptography
				4. Describe psuedo random number
				generation technique
				5. Explain symmetric and asymmetric
				cryptographic algorithms
				1. Describe the architectural features and
				instructions of the ARM microcontroller
				2. Apply the knowledge gained for
				Programming ARM for different
44				applications.
		7	Arm Embedded Systems	3. Recognize the importance of the Thumb
				mode of operation of ARM processors
				4. Describe the techniques involved in
				writing C code for ARM processors and
				Exception &Interrupt handling in ARM
				Processors

				5. Describe the importance and use of
				Firmware, OS and cache in ARM Embedded
				systems
				1. Use simulation tools to demonstrate
				various aspects of the
				communicationprocess.
				2. Demonstrate the modulation/demodulation
				based on BPSK/QPSK-OFDM,GMSK,
			Wireless Communication	TDM.
45		7	Laboratory (18TEL76)	3. Analyze the properties/performance of
				CDMA based codes.
				4. Model the Ti Carrier bit stream.
				5. Develop codes to characterize and
				compute the parameters of different channel
				models of wireless networks.
			Microwave & Antennas Laboratory (18TEL77)	1. Explain the mode characteristics of reflex
				klystron oscillator
				2. Demonstrate the performance and extract
				s-parameters for various microwave
				components
				3. Plot the radiation pattern and find the
		_		intensity, polarization of an antenna/array,
46		7		and prove reciprocity theorem as applied to
				antenna
				4. analyze and measure impedance of given
				microwave component
				5. Explain and find three point method of
				obtaining equivalent circuit parameters and
				find dilectric strength
				1. Consolidate the literature search to identify
				and formulate the engineering problem
		7	Project Work Phase - 1 (18TEP78)	2. Identify the community that shall benefit
4/				through the solution to the identified
				engineering problem and also demonstrate
				concern for the environment and society

				3. Arrive at a list of available engineering
				tools that may be used for solving the
				identified engineering problem
				4. Engage in effective oral and written
				communication of the project work
				5. Ability to perform with the team,
				contribute to the team and mentor/lead the
				team
				1. Understand the basics of LTE
				standardization phases and specifications.
				2. Explain the system architecture of LTE
				and E-UTRAN, the layer of LTE, based on
				the use of OFDMA and SC-FDMA
			Advanced Cellular Communication (18TE81)	principles.
48		8		3. Analyse the role of LTE radio interface
10		0		protocols to set up, reconfigure and release
				the Radio Bearer, for transferring the EPS
				bearer.
				4. Interpret the main factors affecting LTE
				performance including mobile speed and
	_			transmission bandwidth.
				1. Explain network security services and
				mechanisms and explain security concepts
				2. Understand the concept of Transport Level
				Security and Secure Socket Layer.
				3. Explain Security concerns in Internet
49		8		Protocol security
				4. Explain Intruders. Intrusion detection and
				Malicious Software
				5 Describe Firewalls Firewall
	_			Characteristics. Biasing and Configuration
				1 Acquire fundamental knowledge about a
			Internship (18TEI85)	specific technical domain
50	50	8		2 Design the hardware/software related to
				2. Design the naturate/software related to
				me work undertaken

				3. Analyze the results of the work carried out
				4. Demonstrate the professional skill-sets
				1. Understand fundamental knowledge about
				a specific technical domain.
				2. Design the hardware/software related to
				work undertaken.
				3. Analyze and interpret results of
51		8	Project Work Phase 2	experiments conducted on the designed
			(1812283)	solution(s) to arrive at a result-based
				conclusion.
				4. Demonstrate professional skill-sets.
				5. Work in a team and perform as a leader
				with ethical concerns.
			Technical Seminar (18TES84)	1. Identify and Understand the Recent
		8		Advancements in the field of Electronics and
				Telecommunication
				2. Prepare the Effective presentations on the
52				chosen topic of interest.
				3. Deliver the presentation effectively in front
				of the Audience
				4. Prepare the Technical Document on the
				Topic Chosen.

2021 Scheme

Sl.No	Branch	Sem	Subject	CO,S
1	TCE	3	Transform Calculus, Fourier Series and Numerical Techniques (21MAT31)	 To solve ordinary differential equations using Laplace transform. Demonstrate the Fourier series to study the behavior of periodic functions and their applications in system communications, digital signal processing and field theory.

				3. To use Fourier transforms to analyze
				problems involving continuous-time
				signals and to apply Z-Transform
				techniques to solve difference equations
				4. To solve mathematical models
				represented by initial or boundary value
				problems involving partial differential
				equations
				5. Determine the extremals of functionals
				using calculus of variations and solve
				problems arising in dynamics of rigid
				bodies and vibrational analysis.
			Digital System Design using Verilog (21EC32)	1. Simplify Boolean functions using K-map
				and Quine-McCluskey minimization
	TCE	3		technique
				2. Analyze and design for combinational
				logic circuits
2				3. Analyze the concepts of Flip Flops (SR,
				D, T and JK) and to design the synchronous
				sequential circuits using Flip Flops.
				4. Model Combinational circuits (adders,
				subtractors, multiplexers) and sequential
				circuits using Verilog descriptions
				1. Understand the basics of Linear
				Algebra
				2. Analyze different types of signals and
2		2	Basic Signal Processing	systems
3		3	(21EC33)	3. Analyze the properties of discrete-
				time signals & systems
				4. Analyze discrete-time signals & systems
				using Z transforms
				1. Understand the characteristics of BJTs
4		3	Analog Electronics Circuits (21EC34)	and FETs for switching and amplifier
				circuits

				2. Design and analyze FET amplifiers and
				oscillators with different circuit
				configurations and biasing conditions
				3. Understand the feedback topologies and
				approximations in the design of amplifiers
				and oscillators
				4. Design of circuits using linear ICs for
				wide range applications such as ADC,
				DAC, filters and timers
				5. Understand the power electronic device
				components and its functions for basic
				power electronic circuits.
				1. To know about the basic structure of
			Constitution of India and Professional Ethics (21CIP37)	Indian Constitution
		3		2. To know the Fundamental Rights (FR's),
				DPSP's and Fundamental Duties (FD's) of
				our constitution.
				3. To know about our Union Government,
5				political structure & codes, procedures.
				4. To know the State Executive & Elections
				system of India.
				5. To learn the Amendments and
				Emergency Provisions, other important
				provisions given by the constitution
				1. Sketch/draw circuit schematics,
				construct circuits and troubleshoot circuits
				containing op-amps, resistors, diodes,
				capacitors and independent sources.
				2. Analyze and verify the operation of
6		3	LIC Lab using Pspice / MultiSIM (21EC383)	analog integrated circuits like Amplifiers,
				Precision Rectifiers, Comparators and
				Waveform generators.
				3. Design and implement analog integrated
				circuits like Oscillators, Active filters,
				Timer circuits, Data converters and

				compare the experimental results with
				theoretical values.
				1. Design and analyse the BJT/FET
				amplifier and oscillator circuits
				2. Design and test Opamp circuits to realise
				the mathematical computations, DAC and
				precision rectifiers
7		3	Analog & Digital	3. Design and test the combinational logic
			Electronics Lab (21ECL33)	circuits for the given specifications
				4. Test the sequential logic circuits for the
				given functionality
				5. Demonstrate the basic electronic circuit
				experiments using SCR and 555 timer.
			Social Connect and Responsibility (21SCR36)	1. Understand social responsibility
8		3		2. Practice sustainability and creativity
_				3. Showcase planning and organizational
				skills
			Maths for Communication Engineers (21MAT41)	1. Use the concept of Analytic function and
				complex potential to solve the problems in
				electromagnetic theory and complex
				integration in airfoil and image processing.
				2. Obtain series solution ODEs
Q		4		3. Fit an appropriate mathematical model
				for the statistical data by using correlation
				and regression analysis.
				4. Apply discrete and continuous
				probability distribution in engg. field
				5. Construct joint probability distribution
				and testing the hypothesis
				1. Understand the Discrete Fourier
10				transform, digital filters and DSP
		Δ	Digital Signal Processing	architecture
			(21EC42)	2. Apply Discrete Fourier Transform to
				determine the spectrum of real & complex
				signals and filtering of long data sequences.

				3. Apply divide & conquer approach to
				compute DFT.
				4. Develop FIR and IIR filters using
				different techniques
				1. Analyse and solve Electric circuit by
				applying , loop analysis, Nodal analysis
				and by applying network theorems
				2. Evaluate two port parameters of s
				network snd Apply Laplace transform to
				solve electric network.
				3. Interpret different physical and
11		4	Circuits & Controls	mechanical systems in terms of electrical
			(212C43)	system to construct equivalent electrical
				models for analysis.
				4. Apply various control system concepts
				to analyze and find the stability of the
				system.
				5. Represent state model of the system and
				find the time response of the system.
			Communication Theory (21EC44)	1. Compare the performance of different
				types of amplitude modulation schemes.
		4		2. Analyse angle modulation schemes and
				its effects in time and frequency domain.
12				3. Analyse the effect of noise in analog
				modulation systems
				4. Apply the concepts of sampling process
				and waveform coding techniques on
				different types of signals
				1. Understand and analyse the essentials of
				human values and skills, self exploration,
		4		happiness and prosperity.
13			Universal Human Values	2. Evaluate coexistence of the "I" with the
			(2101147)	body.
				3. Identify and evaluate the role of harmony
				in family, society and universal order.

				4. Understand and associate the holistic
				perception of harmony at all levels of
				existence.
				5. Develop appropriate technologies and
				management patterns to create harmony in
				professional and personal lives.
				1. Demonstrate the signal generation and
			Octave / Scilab for signals (21EC483)	sampling.
				2. Develop a Scilab program to simulate
14		4		signal processing operations.
				3. Design IIR and FIR filters.
				4. Design, demonstrate and visualize
				different real world signals
				1. Demonstrate the AM and FM
				modulation and demodulation by
				representing the signals in time and
				frequency domain
				2. Design and test the sampling,
15		4	Communication Laboratory	Multiplexing and PAM with relevant
10			I (21ECL46)	circuits
				3. Demonstrate the basic circuitry and
				operations used in AM and FM receivers.
				4. Illustrate the operation of PCM and delta
				modulations for different input conditions.